## Week Two Quiz >>> A sample space is >>> Probability and Statistics: To p or not to p?

### 1.

Question 1

A sample space is:

**=========================================**

### 6.

Question 6

If we rolled a fair die a very large number of times, then we would expect the average score to be approximately:

**=========================================**

### 9.

Question 9

To apply the binomial distribution, there must be a constant probability of success.

**=========================================**

### 10.

Question 10

If X∼Bin(n,π) then $X$ is well-approximated by a Poisson(λ=nπ) distribution when:

**=========================================**

### 2.

Question 2

Probability…

**=========================================**

### 3.

Question 3

Probabilities of geopolitical events are estimated:

**=========================================**

### 5.

Question 5

The expectation of any (discrete) random variable $X$:

**=========================================**

### 8.

Question 8

For any Bernoulli random variable, $P(X=0)$ is:

**=========================================**

### 9.

Question 9

If X∼Bin(n,π) then E(X)=nπ.

**=========================================**

### 3.

Question 3

Everyone will agree on the exact probabilities of various geopolitical events.

True

**False****=========================================**

### 4.

Question 4

When there are $N$ equally likely outcomes in a sample space, where $n<N$ of them agree with some event $A$, then:

**$P(A)=n/N$**

P(A)=N/nP(A)=N/n

P(A) = 1P(A)=1 **=========================================**

### 6.

Question 6

If $X$ represents the score on a fair die, then E(X) is:

**=========================================**

### 10.

Question 10

The Poisson distribution can approximate the binomial distribution under certain limiting conditions.

**=========================================**

### 7.

Question 7

For the family of Bernoulli distributions, $π$ is a:

variable

sample space

**parameter**